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The homogeneous Poisson point process in Rd �denoted by Pd� is a basic model of stochastic geometry and
modern statistical physics. Using ideas from fractal geometry, geometrical statistics, and random matrix theory,
we introduce the model of random points on a self-similar fractal as a model of intermediate statistics, in the
sense that the interpoint spacing statistics of the model are intermediate between those of P1 and P2 when the
fractal dimension is in between 1 and 2, and intermediate between those of P2 and P3 when the fractal
dimension is in between 2 and 3, and so on. We also introduce the idea of using a continuous family of such
models to interpolate between P1 and P2 and thereby effectuate crossover transitions between P1 statistics and
P2 statistics. We first derive the kth-nearest-neighbor spacing distribution for the general model, and then study
the interpoint spacing statistics of several realizations of the model involving Sierpinski fractals in R2 and R3.
We also study a realization of a continuous interpolation between P1 and P2, in particular a continuous
interpolation between a point process on a line and a point process on a plane-filling curve, using the continu-
ous family of self-similar Koch curves in R2. In the latter study, we specifically analyze the second-nearest-
neighbor interpoint spacing statistics, which undergo a crossover transition between semi-Poisson and Ginibre
statistics.
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I. INTRODUCTION

There is an interesting and deep connection between the
spacing statistics of eigenvalues from the classical Gaussian
random matrix ensembles and the interpoint spacing statis-
tics of the Poisson point process in R2 �1,2�. The nearest-
neighbor spacing statistics of eigenvalues from Gaussian en-
sembles of 2�2 random matrices constitute the most
elementary results of classical random matrix theory �RMT�,
and are well-known and have been exploited in many fields
of physics �3–6�. The Poisson point process is a stochastic
model that is often encountered in statistical physics �7� and
astrophysics �8,9�, but the spacing statistics of Poisson point
processes are perhaps not well-known to most physicists, and
therefore deserve some introduction. The homogeneous Pois-
son point process in Rd �henceforth denoted by Pd� can be
understood as the limit of a simpler stochastic model: the
binomial point process in Rd �10�. The binomial model con-
sists of N independent uniformly distributed random points
in a compact subset W of Rd. A convenient choice for W is a
d-dimensional ball of radius R and center at the origin. Let us
denote the d-dimensional volume of this ball by bdRd �where
bd is the volume of the unit ball in Rd�. If we take the limits
N→� and R→� in such a way that N /bdRd�� remains
constant, then the limiting stochastic point process is Pd
�with intensity ��.The kth-nearest-neighbor spacing distribu-
tion �kth-NNSD� for Pd, which we shall denote by
D�s ;k ,d ,��, gives the probability D�s ;k ,d ,��dS of finding
the kth nearest neighbor to a given point of Pd at a distance
between s and s+ds. It can be shown that the NNSD for Pd
is given by �10�

D�s;1,d,�� = �bddsd−1 exp�− �bdsd� . �1�

It is easy to verify that this distribution is normalized �i.e.,
�0

�D�s ;1 ,d ,��ds=1�, and that the mean nearest-neighbor
spacing is given by

s̄ = �
0

�

sD�s;1,d,��ds = ��bd�−1/d��1 + 1/d� . �2�

If we transform to the random variable S=s / s̄, then the dis-
tribution �1� becomes

D�S;1,d� = �dSd−1 exp�− �Sd� , �3a�

where the coefficient � is a constant that depends only on d,

� = ��	1 +
1

d

�d

. �3b�

�Equation �3a� is also given in Ref. �1�.� The NNSD
D�S ;1 ,d� gives the probability D�S ;1 ,d�dS of finding the
nearest neighbor to a given point of Pd at the �dimensionless�
scaled distance between S and S+dS. In the context of RMT,
there are two interesting special cases: the NNSD for P1 is
the well-known Poisson distribution,

D�S;1,1� = PP�S� = exp�− S� , �4�

and the NNSD for P2 is the Wigner distribution,

D�S;1,2� = PW�S� =
�

2
S exp	−

�

4
S2
 . �5�

For later reference, the so-called Wigner surmises for the
NNSD of eigenvalues from the GXE �X�O,U,S� are given
by �see Ref. �5��

PW�S;1,	� = A�	�S	exp�− B�	�S2� , �6a�

where
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A�	� = 2

��		

2
+ 1
�	+1

��		 + 1

2

�	+2

, B�	� =

��		

2
+ 1
�2

��		 + 1

2

�2

, �6b�

and the parameter 	=1,2, and 4 labels the symmetry classes
�i.e., the classical Gaussian ensembles�, which are orthogonal
�GOE�, unitary �GUE�, and symplectic �GSE�, respectively.
The Wigner surmises are exact for Gaussian ensembles of
2�2 random matrices, and are excellent analytical approxi-
mations for the nearest-neighbor spacing statistics of eigen-
values from Gaussian ensembles of arbitrarily large random
matrices �1�. Note that PW�S ;1 ,1�� PW�S�.

Although the NNSD for Pd �Eq. �3�� depends only para-
metrically on the Euclidean space dimension d, it is, in ac-
tuality, the discrete parameter d that characterizes the distri-
bution and determines the behavior at both small and large
values of S �i.e., D�S ;1 ,d��Sd−1 as S→0 and D�S ;1 ,d�
�exp�−�Sd� when S
1�. Most importantly, notice that
D�0;1 ,d�=0 when d�1. The Wigner surmises for the
NNSDs of eigenvalues have the same property �see Eq. �6�
and note that PW�0;1 ,	�=0�, and this property is �to use the
conventional term from RMT� referred to as “level repul-
sion.” In RMT, the degree of level repulsion depends on the
symmetries of the Hamiltonian, which are conveniently sym-
bolized by the so-called level-repulsion parameter 	. Analo-
gously, we can think of the discrete parameter d in Eq. �3� as
a “point-repulsion” parameter. This interpretation of the di-
mension as a measure of the amount of “repulsion” between
points of a set is consistent with elementary notions of the
more general fractal dimension �66�, which suggests that if
we wanted to consider random points uniformly distributed
on fractal subsets of Rd, then the nearest-neighbor interpoint
spacing statistics would still be described by Eq. �3� but with
the dimension d as a continuous �i.e., noninteger� parameter
equal to the fractal dimension of the set. �In fact, for strictly
self-similar fractals, this assertion is correct, and we shall
prove it in the next section.� The motivation for this perhaps
obscure proposition is the following. If we consider point
processes on a family of fractal sets whose dimension
changes continuously from 1 to 2 as some set parameter is
varied, then such a family of point processes would consti-
tute a new model for a crossover transition between Poisson
and Wigner statistics. Point processes on fractals �67� would
therefore serve as examples of stochastic models that do not
involve random matrices but whose nearest-neighbor spacing
statistics nevertheless exhibit the full range of statistics be-
tween Poisson and Wigner typified by many random matrix
models �13–22�. It is well-known that the nearest-neighbor
energy-level spacing statistics of a typical time-reversal in-
variant quantum Hamiltonian undergoes the same transition
as the underlying classical dynamics change from being
completely integrable to completely chaotic �23–25�. There
indeed is an interesting connection between point processes
on fractals and quantum chaos. The connection is based on a
result which we have only recently reported �26� and which
we will again encounter later in this paper.

Apart from these particular considerations, it is conceptu-
ally useful in its own right to treat and study the model of
random points on a self-similar fractal with dimension in-
between 1 and 2 as a model that is �in terms of spacing
statistics� intermediate between P1 and P2. It will be conve-
nient to symbolize the model of random points �uniformly
distributed� on a self-similar fractal with similarity dimen-
sion ds�1 by Rds

�68�. We have specifically considered the
model Rds

when ds� �1,2�. The reason is that the nearest-
neighbor spacing statistics of Rds

will be in between Poisson
and Wigner when ds� �1,2�. This case is of special interest
in relation to RMT as we have already discussed above and
as we shall further discuss below in the context of the higher-
order spacing statistics. However, there is no formal restric-
tion to fractals with dimension in between 1 and 2. For in-
stance, we can �and shall in Sec. III� consider random points
on a self-similar fractal embedded in R3, whose similarity
dimension ds� �2,3�, and we will see that the nearest-
neighbor spacing statistics are in between those of P2 and P3.

So far, we have discussed only the nearest-neighbor spac-
ing statistics, and we now move on to the higher-order spac-
ing statistics. We again begin with Pd. The kth-
nearest-neighbor spacing distribution �kth-NNSD� D�S ;k ,d�
for Pd gives the probability D�S ;k ,d�dS of finding the kth
nearest neighbor to a given point of Pd at a distance between
S and S+dS. It can be shown that the kth-NNSD for P1 is
given by

D�S;k,1� =
kk

��k�
Sk−1exp�− kS� . �7�

Interestingly, as pointed out in Ref. �1�, the second-NNSD
for P1 is the so-called semi-Poisson distribution,

D�S;2,1� = PsP�S� = 4Sexp�− 2S� . �8�

The semi-Poisson distribution has been used to describe the
spectral statistics of various models �see Refs. �27,28��,
whose nearest-neighbor energy-level spacing distributions
exhibit linear repulsion at small S and exponential falloff at
large S. The semi-Poisson distribution has been particularly
useful in helping to understand the spectral statistics of
pseudointegrable billiards �29,30�. There is, in fact, a more
general correspondence between the higher-order spacing
statistics of P1 and what we shall refer to as the “generalized
semi-Poisson statistics” �69�

PsP�S;n,	� =
�	 + 1�n�	+1�

��n�	 + 1��
S�n�	+1�−1�exp�− �	 + 1�S� . �9�

Note that PsP�S ;1 ,1�� PsP�S�. Comparison of Eqs. �7� and
�9� reveals that, formally,

D�S;	 + 1,1� = PsP�S;1,	� . �10�

The kth-NNSD for P1 is relevant to the subject of integrable
Hamiltonian systems. It is well known that the NNSD of the
energy levels of a typical quantum Hamiltonian, whose clas-
sical limit is integrable, is Poissonian. We are not aware of
any work that specifically considers the higher-order energy-
level spacing distributions of quantized integrable systems,
but the kth-NNSD should be �by virtue of the fact that the
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long-range “gap function” statistics of typical integrable sys-
tems are Poissonian �35�� the distribution D�S ;k ,1�
= PsP�S ;1 ,k−1�. Further discussions of Poisson processes in
one dimension and their relevance to statistical analyses of
energy-level spectra can be found in Ref. �36�. We next turn
to P2 statistics. It can be shown that the kth-NNSD for P2 is
given by �2�

D�S;k,2� =
2�k

��k�
S2k−1exp�− �S2� , �11a�

where

� = �	k +
1

2



��k�
�

2

. �11b�

The Wigner surmises are usually defined only for three inte-
ger values �	=1,2 ,4�, which correspond to the three classi-
cal Gaussian ensembles. It is interesting though that if 	 in
Eq. �6� were such that 	�N�−� �the set of all postive odd
integers�, then Eq. �6� would exactly reproduce the set of all
higher-order spacing distributions for P2. There is, in fact, an
intricate set of relations between the higher-order spacing
statistics of P2 and the Wigner surmises for the kth-NNSDs
of eigenvalues from the GXE �X�O,U,S� �denoted by
PW�S ;k ,	�� �see Ref. �2��. Two examples are

D�S;4,2� = PW�S;2,2� �12�

and

D�S;7,2� = PW�S;4,1� = PW�S;2,4� . �13�

There is also a direct relation between P2 and non-Hermitian
RMT. The second-NNSD for P2 is identical to the NNSD of
complex eigenvalues from Ginibre’s ensemble of 2�2 gen-
eral complex non-Hermitian random matrices �37�,

D�S;2,2� = PG�S� =
34�2

27 S3exp	−
32�

24 S2
 . �14�

Note the commonly overlooked fact that PW�S ;1 ,3�= PG�S�.
This ensemble yields cubic level repulsion �i.e., PG�S��S3

for small values of S�. Cubic level repulsion in quantum
spectra was found to be a universal property of dissipative
quantum systems with a chaotic classical limit �38�.

We now come back to Rds
. If ds� �1,2�, we expect the

spacing statistics of Rds
to be in between those of P1 �Eq.

�7�� and P2 �Eq. �11��, and as discussed above, we can think
of a family of models �Rds

:1�ds�2��R�1,2� as interpolat-
ing between P1 and P2, and the correspondng spacing statis-
tics executing a crossover transition between P1 statistics and
P2 statistics. So, for instance, the third-NNSD for Rds

should
be in between D�S ;3 ,1� ��PsP�S ;1 ,2�� and D�S ;3 ,2�, and
the family of third-NNSDs for R�1,2� should sweep through
the region bounded by the distributions D�S ;3 ,1� and
D�S ;3 ,2�. Given the results we have quoted above, there are
a number of cases that are of particular interest in relation to
RMT. For example, the second-NNSD for Rds

should be an
intermediate distribution in between the semi-Poisson distri-
bution PsP�S� and the Ginibre distribution PG�S�, and the

second-nearest-neighbor spacing statistics of R�1,2� should
execute a crossover transition between semi-Poisson and
Ginibre statistics as ds ranges between 1 and 2. In Sec. III of
the paper, we demonstrate and clarify these ideas with ex-
amples. We begin, however, in the next section with a deri-
vation of the kth-NNSD for Rds

.

II. DERIVATION OF THE kth-NNSD

Suppose that N points of a self-similar set K�Rd are
chosen randomly and uniformly. The probability P�s�ds of
finding the kth nearest neighbor to a given point at a distance
between s and s+ds is equal to the probability of finding one
of the �N−1� points at a distance between s and s+ds from
the given point and �k−1� points within a distance s of the
given point and the ��N−2�− �k−1��= �N−k−1� remaining
points at a distance greater than s. Let P�s� denote the prob-
ability of finding a point within a distance s of a given point.
The probability of finding �k−1� points would require that
P�s� be multiplied �k−1� times since the points are selected
independently. The probability of finding one point at a dis-
tance greater thans is then �1−P�s��, and for �N−k−1�
points, the probabilities are again multiplicative due to point
independence. Thus,

P�s�ds = �1 − P�s���N−k−1��P�s���k−1�dP�s� , �15a�

where the prefactor

 =
�N − 1�!

�N − k − 1� ! �k − 1�!
�15b�

is a combinatorial factor that accounts for all possible point
configurations �see Appendix A�, and dP�s�=P��s�ds is the
probability of finding a point in a shell with inner and outer
radii s and s+ds centered about the given point.

It remains to specify the probability P�s�. To do this, we
need to determine the number of points within a volume
defined by a d-dimensional ball of radius s �centered about
the given point�. In order to derive this “number-radius” re-
lation, there is a crucial fact that must be observed: a uni-
formly sampled subset of K has the same self-similar struc-
ture as K itself. Suppose that the d-dimensional ball of radius
R centered about the given point contains all N points. Then,
a ball of radius r= �1/r�R contains �1/n�N points, where the
scaling factors r and n depend on the scaling structure of K.
As a conceptual example, consider the well-known triadic
Koch fractal on the interval �0,R�, and consider disks of
various radii centered about the origin in R2. The disk of
radius R contains all N points, and if the random points are
uniformly selected, then the disk of radius r=R /3 contains
N /4 points. We can then immediately specify the probability
P�s� based on the scaling behavior of the set, but we shall
first give the following more formal argument. Suppose that
within radius R of the given point, there are N points, and
within radius r1= �1/r�R there are N1= �1/n�N points, within
radius r2= �1/r�2R there are N2= �1/n�2N points, and more
generally within radius rn= �1/r�nR there are Nn= �1/n�nN
points. It follows that there is a discrete scaling relation Nn
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=�rn
dm, where the prefactor � depends on the upper cutoffs N

and R, that is, �=N /Rdm, and the scaling exponent �i.e., the
fractal dimension� dm=lnn / lnr depends only on the scaling
factors r and n. The continuum limit of the above discrete
scaling relation �appropriate when N�1� gives the following
relation between N and r:

N�r� = �N�R�
Rdm

�rdm = � N

Rdm
�rdm. �16�

The definition of the fractal dimension dm given above coin-
cides with all other definitions of the dimension for strictly
self-similar fractals, and in particular, dm=ds. Number-radius
scaling relations are common in the theory of fractals and in
physics �39�. In various applications, number-radius relations
are often referred to as “mass-length” relations and the frac-
tal dimension dm is often called the mass dimension. This
terminology is no doubt in large part due to the various
mass-radius relations given in Mandelbrot’s influential book
�40�. The number-radius relation �16� can be understood as a
mass-radius relation when an individual sampling point be-
comes the unit of mass. However, it is important to be aware
that there are other �slightly more technical� definitions of
the mass dimension �41�. Although it is of no consequence
here, we should also make casual reference to the fact that, in
most applications where mass-length relations are employed,
the mass dimension is extracted from the slope of a lnn
versus lnr plot. Coming back now to P�s�, the probability of
finding a point within a distance s of a given point is gov-
erned by the power law

P�s� =
N�s�

N
= Asds, �17�

where the coefficient A=1/Rds, and ds�1 is the similarity
dimension of K �70�. Therefore, Eq. �15� becomes

P�s�ds = �1 − Asds��N−k−1��Asds��k−1�Adss
ds−1ds . �18�

Recall that dP�s�=P��s�ds=Adss
ds−1ds. It is straightforward

to verify that P�s� is normalized �i.e., �0
RP�s�ds=1�.

Next, we calculate the mean kth-nearest-neighbor spacing
s̄=�0

RsP�s�ds,

s̄ =
ds

�Rds�k�
0

R �1 − 	 s

R
ds��N−k−1�

s�k−1�dssdsds

=Rds�
0

1

�uds�k�1 − uds��N−k−1�du

=R�
0

1

v�k−1�+1/ds�1 − v��N−k−1�dv

=RB�k + 1/ds,N − k�

=R��N − k���k + 1/ds�/��N + 1/ds� .

In the second line, we have made a change of variables u
=s /R, and in the third line, we have made one further
change of variables v=uds. The integral in the third line we

recognize as the Beta function B�� ,�� with parameters �
=k+1/ds and �=N−k, and this then gives the fourth line. We
then used the usual relation between the Gamma and Beta
functions to arrive at the fifth line. Finally, using Eq. �15b�,
the mean spacing can be written as

s̄ = R ��N�
��N + 1/ds�

��k + 1/ds�
��k�

. �19�

It can be shown that the term

��N�
��N + 1/ds�

=
1

N1/ds
�1 + O	 1

N

� as N → � , �20�

and, therefore, the asymptotic mean kth-nearest-neighbor
spacing, is, to leading order,

s̄ =
R

N1/ds
���k + 1/ds�

��k� � as N → � . �21�

It is worth noting here that results similar to Eq. �21� have
been found in the context of the Euclidean “traveling sales-
man problem” �TSP� in Ref. �42� �see also footnote �71��,
and also in the context of point processes on closed mani-
folds in Rd �45� and on compact sets in Rd �46�. Introducing
the rescaled spacing S=s / s̄ and taking the limit N→�, the
distribution P�s� in Eq. �18� becomes the distribution

P�S;k,ds� =
�kds

��k�
Skds−1exp�− �Sds� , �22a�

where

� = ��	k +
1

ds

/��k��ds

. �22b�

Note that �0
�P�S ;k ,ds�dS=1 and S̄=�0

�SP�S ;k ,ds�dS=1. The
distribution �22� has two important asymptotic properties:
P�S ;k ,ds��Skds−1 for small S �i.e., the point repulsion be-
tween kth nearest neighbors is kds−1�, and P�S ;k ,ds�
�exp�−�Sds� for large S, where the coefficient � depends on
both k and ds. For large values of k, ��k, and so
P�S ;k ,ds��exp�−kSds� for large S �i.e.,S
1�.

The distribution P�S ;k ,ds� is valid for point processes on
any self-similar subset of Rd with similarity dimension ds
�1. If K is a classical �nonfractal� self-similar set �i.e., a
d-dimensional cube�, then ds=d and Eq. �22� should then be
consistent with the kth-NNSD for Pd �see Ref. �1�, but note
that there is an error in the distribution given there�. We
should point out that there are, in fact, a number of self-
similar fractals whose similarity dimension ds=2 �one ex-
ample is studied in Sec. III�. These special fractals play a
fundamental role here because random points uniformly dis-
tributed on these fractal sets should have the same spacing
statistics as P2.

As we have communicated in Ref. �26�, the NNSD for Rds
is

P�S;1,ds� = �dsS
ds−1exp�− �Sds� , �23a�

where
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� = ��	1 +
1

ds

�ds

, �23b�

which is the Brody distribution �47� with Brody parameter
q= �ds−1�,

P�S;1,ds� = PB�S;q = ds − 1� . �24�

In mathematical statistics �48�, the distribution P�S ;1 ,ds�
would be referred to as the �unit-mean� Weibull distribution
with shape parameter ds �see Appendix C�.

If 1�ds�2, then the usual Brody parameter q is the frac-
tional part of the similarity dimension. Incidentally, the simi-
larity dimension of a self-similar curve can be expressed as
�see Ref. �49�� ds=1+dr, where dr is the exponent of the
power law ��=1/cdr� that relates the measured length � of a
self-similar curve to the “compass setting” c �or precision
1/c�. Therefore, if K is a self-similar curve, then the usual
Brody parameter q=dr.

It is both interesting and important to cite here the work
of Badii and Politi �50�, who obtained an analytical formula
for the NNSD of random points on a Cantor set with capacity
dimension D0�1 �see Eq. �5.7� of Ref. �50��. The authors
actually noticed the resemblence between their formula and
the Brody distribution, but did not carry out the essential task
of rescaling the random variable s by its mean s̄ �as we have
done here� to arrive at the Brody distribution. This rescaling
might appear to be an almost trivial matter �after the fact�,
but the result is not inconsequential.

The Brody distribution has a long history in random ma-
trix theory and in quantum chaos. It is an indispensable tool
for analyzing the nearest-neighbor energy-level spacing sta-
tistics of quantized nonintegrable Hamiltonian systems. Un-
fortunately, in the context of Hamiltonian systems, the Brody
distribution has no physical basis �i.e., it is not derived from
any physical theory�. It is a purely suppositional formula and
generally regarded as nothing more than a mathematical
function that interpolates between the Poisson and Wigner
distributions. Although the Brody parameter has served as a
phenomenological “chaoticity parameter” �see, for example,
Ref. �51��, most authors believe the Brody parameter �in the
context of Hamiltonian systems� is only a fitting parameter
with no deeper physical meaning �24�. In the context of the
model Rds

, the Brody parameter is not a meaningless control
parameter; it is precisely the �relative� similarity dimension
of the fractal set �i.e., q=ds−1�. To our knowledge, the
model Rds

is the first model whose NNSD is the Brody dis-
tribution, and the first model for which the Brody parameter
has been found to have a precise physical meaning.

III. NUMERICS

We now turn to numerical experiments. We have studied
numerically the spacing statistics of random points on many
of the well-known classical fractals in R2, R3, and R4, but we
only give results here for a few of the Sierpinski fractals that
reside in R2 and R3. See Figs. 1 and 2.

We begin with a brief overview of the numerical proce-
dure. Random points on each fractal were selected using the
random iteration algorithm �RIA�, which is well-known in

the subject of random iterated function systems �RIFSs�.
An excellent description of this algorithm and the under-
lying theory is given in Ref. �52� �see also Appendix D
for a brief summary�. MATLAB 6.5 and its default RAND
function �53� were used for this part of the numerical pro-
cedure. The spacings were then computed using the
usual Euclidean metric ��u ,v� between any two
points u= �u1 ,u2 , . . . ,ud� and v= �v1 ,v2 , . . . ,vd� in Rd:
��u ,v�=��u1−v1�2+ �u2−v2�2+ ¯ + �ud−vd�2. The distance
between any given point xi and its nearest neighbor is then
defined by si

�1�=min���xi ,x j� : i , j=1, . . . ,N �j� i��, and
similarly the distance between xi and its furthest neighbor is
defined by si

�N�=max���xi ,x j� : i , j=1, . . . ,N �j� i��. If the
spacings for each point xi are sorted by size �in ascending
order�, then the kth-nearest-neighbor spacing is the kth ele-
ment of the set �si

�1� ,si
�2� , . . . ,si

�k� , . . . ,si
�N��. Although the set

�si
�k� : i=1, . . . ,N� defines a set of spacings, the kth-NNSD is

actually defined in terms of the scaled spacings Si=si
�k� / s̄�k�,

where s̄�k�= �1/N��i=1
N si

�k� is the �numerically calculated�
mean kth-nearest-neighbor spacing. We constructed the his-
tograms by binning all values of Si and subsequently normal-
izing the area under the histogram to unity. Each histogram
displayed in Figs. 1 and 2 was constructed from one
sample of N=20 000 random points �selected uniformly� on
the fractal.

It is useful to know how accurately the histogram data
follow the theoretical distribution �22�. In studies of energy-
level statistics, a theoretical distribution is often overlaid on
a histogram, and sometimes certain statistical tests �for ex-
ample, the �2 test� are performed in order to determine how
accurately the theoretical distribution reproduces the histo-
gram data. We could also use the �2 test here, but we prefer
to compute two simpler figures-of-merit which more readily
convey how well the theory describes the given data. We first
use the Levenberg-Marquardt �LM� method �54� to find the
numerical value of the parameter ds that gives the optimal fit
of P�S ;k ,ds� �Eq. �22�� to the histograms. This number df

can then be immediately compared to the theoretical value
ds. We should point out that the use of methods based on
distances to kth-nearest-neighbors has been proposed and de-
veloped in a number of papers �50,55–59� for the specific
purpose of estimating the dimension of a fractal set �espe-
cially a strange attractor�. The use of the LM method to
extract a fractal dimension from fits to a kth-nearest-neighbor
spacing histogram could indeed be propounded as a different
method of using kth-nearest-neighbor distance information to
estimate fractal dimensions, but we should make clear that
the current goal is not to exemplify a new method of dimen-
sion estimation; the goal here is to produce a figure-of-merit
for how accurately the distribution �22� reproduces the his-
togram data obtained from particular realizations of Rds

. It is
important to keep in mind that each realization yields a
unique histogram �and hence a unique df�, and it is thus more
informative to average over several realizations �all indepen-

dent of each other� and subsequently define df = d̄f ±�, where

d̄f is the average df value obtained from n realizations, and �

is the standard deviation. The percentage error of d̄f relative
to ds is denoted by �. For the present study, we analyzed ten
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independent realizations for each fractal, generated ten cor-
responding histograms, and obtained ten different fits to
these histograms. Up to and including the third-nearest-

neighbor statistics, we find that d̄f �obtained from n=10 in-
dependent realizations� is typically within 5% of the exact
similarity dimension ds. Almost all of the fractals we studied
gave comparable results. Most of the error is due to edge
effects. We inevitably introduce errors due to finite size or
edge effects by including all of the points selected by the
RIA in the statistical analysis. These errors are statistically
insignificant as long as N is sufficiently large �see Eq. �21��.
Nevertheless, as the numerical results indicate, when the
number of points is not large �N�104�, errors due to edge
effects become increasingly important for longer-range cor-
relations �i.e., higher k�. If the number of points is large �for
instance, N�O�1010��, and assuming k�5 and 1�ds�2,
we would expect errors due to edge effects to be negligible.
It is interesting to note here that the simple procedure of
excluding points within some prescribed distance from the
edge of the fractals does not substantially reduce the error.
This is unlike point processes on the classical self-similar
sets, where the same procedure does significantly reduce the
error due to edge effects. Edge effects account for the obvi-
ous difference in the size of the error in the two examples
under consideration in Fig. 1. The error for the carpet is
about twice as large as that for the gasket. This can be un-
derstood easily upon recognition of the fact that edge effects

are practically irrelevant for the gasket except near the cor-
ners of the gasket, whereas edge effects are important along
the entire edge of the carpet.

Random points on the Sierpinski gasket and Sierpinski
carpet �see Fig. 1� are examples of models that are interme-
diate between P1 and P2. The spacing statistics of these mod-
els should be in between those of P1 and P2. As we can
observe from Fig. 1, the NNSDs are in between Poisson and
Wigner, the second-NNSDs are in between semi-Poisson and
Ginibre, and the third-NNSDs are in between D�S ;3 ,1� and
D�S ;3 ,2�. The Sierpinski tetrahedron is an example of a
self-similar fractal whose similarity dimension ds=2, and as
such, random points uniformly distributed on this fractal
should have the same spacing statistics as P2. So, the NNSD,
the second-NNSD, and the fourth-NNSD should follow the
Wigner surmises PW�S ;1 ,1�� PW�S�, PW�S ;1 ,3�� PG�S�,
and PW�S ;2 ,2�, and so on. As we can see from the top panel
of Fig. 2, the second-NNSD of the random points on the
tetrahedron does follow Ginibre statistics. Random points on
the Sierpinski pyramid is an example of a model that is in-
termediate between P2 and P3, and the spacing statistics
should be intermediate between those of P2 and P3. This
example is interesting since it illustrates an important point:
the NNSD for this and other higher-dimensional models is
the Brody distribution with Brody parameter q=ds−1. In
RMT, and in studies of quantum chaos, the Brody distribu-
tion is not meant to be used beyond the Wigner limit. In the
context of Rds

, there is no such restriction and the Brody

FIG. 1. Particular realizations of Rds
consist-

ing of 20 000 random points �selected uniformly�
on the Sierpinski gasket �top left� and the Sier-
pinski carpet �top right�, and the corresponding
spacing distributions for the Sierpinski gasket
�left panel� and the Sierpinski carpet �right

panel�. The numerical data �i.e., df = d̄f ±� and ��
given in each window are figures-of-merit and
are described in the main text. The exact similar-
ity dimension ds of each fractal is also given �to
three decimal places�. The dotted, dashed, and
solid curves are the distributions PP�S�, PW�S�,
and P�S ;1 , d̄f� for k=1; PsP�S�, PG�S�, and

P�S ;2 , d̄f� for k=2; and D�S ;3 ,1�, D�S ;3 ,2�,
and P�S ;3 , d̄f� for k=3.
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distribution continues to be valid beyond the Wigner limit.
As we can see in the bottom panel of Fig. 2, the nearest-
neighbor spacing histogram does indeed closely follow the
Brody distribution.

A number of random matrix models have been devised
whose eigenvalue statistics exhibit crossover transitions be-
tween the different classes of statistics that govern the differ-
ent ensembles. In the present context, a crossover transition
between say P1 and P2 statistics can be realized by consid-
ering point processes on a family of self-similar sets whose
dimension ranges between 1 and 2. To demonstrate this idea
explicitly, we use the continuous family of Koch curves in
R2. These fractals can be thought of as the attractors of a
one-parameter family of iterated function systems �IFSs�.
The similarity transformations defining the IFS involve a ro-
tation that is conveniently parametrized by the angle �.
When �=0, the attractor is a line, and when �=� /2, the
attractor is the famous Sierpinski-Knopp plane-filling curve,
whose image is a solid isosceles triangle in R2 �60�. For
intermediate values �i.e., �� �0,� /2��, the attractors are
various self-similar curves of prescribed dimension ds
� �1,2�. The second-nearest-neighbor spacing statistics of
the random points undergo a crossover transition from semi-
Poisson to Ginibre statistics �see Fig. 3� as the self-similar
set continuously deforms from a line to a plane-filling curve
�i.e., as the rotation angle � varies between 0 and � /2�.
Random points on these fractals were again selected using
the RIA, and MATLAB 6.5 and its default RAND function were
used for the numerics. Histograms were constructed from
samples of N=20 000 random points, and the LM method
was then employed to fit Eq. �22� to the histograms �as be-

fore� from which the number df is determined. The percent-

age error � of d̄f �obtained from n=10 independent realiza-
tions� relative to ds is typically under 1% when ds
� �1,1.5� and typically under 3% when ds� �1.5,2�.

We could also study the higher-order �i.e., higher k� spac-
ing statistics of this model. Note that we studied the nearest-
neighbor �k=1� spacing statistics of this model in Ref. �26�.
For any k, the spacing statistics will always be understood as
executing a crossover transition between P1 statistics and P2
statistics. Formally, the transition could also be understood as
a crossover transition between Poisson statistics �Eq. �7�� and
Wigner statistics �Eq. �6�� with 	= �2k−1�.

IV. CONCLUSION

In this paper, we have studied the kth-nearest-neighbor
spacing statistics of Rds

, the model of random points �uni-
formly distributed� on a self-similar set K�Rd with similar-
ity dimension ds�1. We introduced Rds

as a model whose
spacing statistics are intermediate between those of P1 and
P2 when ds� �1,2�, and intermediate between those of P2

and P3 when ds� �2,3�. This idea was inspired by a recur-
rent theme in RMT and in quantum chaos—models of “in-
termediate statistics,” that is, models whose spectral statistics
are intermediate between different classes of statistics. When
ds� �1,2�, the spacing statistics of Rds

are intermediate be-
tween P1 statistics and P2 statistics, and in the context of
RMT, this case is especially interesting because of two re-
markable correspondences: �i� the correspondence between
the spacing statistics of P1 and the generalized semi-Poisson
statistics �Eq. �10��, and �ii� the correspondence between the
spacing statistics of P2 and the Wigner surmises of RMT �for
example, Eqs. �5� and �12�–�14��. However, the scenario
when ds� �2,3� exemplifies the more general idea. We also
introduced the idea of using a continuous family of models
�Rds

:1�ds�2��R�1,2� to interpolate between P1 and P2,
and this was motivated by another prevalent theme in
RMT—random matrx models whose spectral statistics ex-
ecute crossover transitions between different universality
classes.

We first derived the kth-NNSD for Rds
�Eq. �22��. This

generalizes the result for Pd �1�. The key to this generaliza-
tion was the observation that the probability measure about a
given point obeys a number-radius �or mass-length� scaling
law, and that this scaling law is a consequence of the under-
lying self-similarity of the fractal set. Another crucial ingre-
dient of the derivation is the rescaling of the distance be-
tween a given point and its kth-nearest-neighbor by the mean
kth-nearest-neighbor distance. It is important to also keep in
mind that the spacing distributions for P2 coincide with the
Wigner surmises of RMT only when the distance variable s
is rescaled by its mean s̄.

Perhaps the most interesting result �from the point of view
of RMT� is that the Brody distribution is the NNSD for Rds

.
The implications to quantum chaos are deep �see Ref. �26��.
Let us not, however, bypass the result itself; the Brody dis-
tribution is a probability density that can be derived from an
actual stochastic model, Rds

, and in the context of this model,

FIG. 2. �Top panel� A sample of 20 000 random points �selected

uniformly� on the Sierpinski tetrahedron, and the corresponding

second-NNSD. �Bottom panel� A sample of 20 000 random points

�selected uniformly� on the Sierpinski pyramid, and the correspond-

ing NNSD. �Top right� The dotted, dashed, solid, and dotted-dashed

curves are the distributions PsP�S�, PG�S�, P�S ;2 , d̄f�, and

P�S ;2 ,3�, respectively. �Bottom right� The dotted, dashed, and

solid curves are D�S ;1 ,2�, D�S ;1 ,3�, and PB�S ; d̄f −1�,
respectively.
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the Brody parameter q=ds−1 is not a meaningless control
parameter.

The ideas put forth in the Introduction were realized in
several numerical demonstrations involving Sierpinski frac-
tals in R2 and R3. Here we have only given a sample of the
extensive numerical work that has been carried out using
many of the well-known classical fractals. We also studied
the second-nearest-neighbor spacing statistics of random
points on a family of self-similar Koch curves with similarity
dimension ds� �1,2�, and observed a crossover transition be-
tween semi-Poisson and Ginibre statistics. To our knowl-
edge, this is the first example of a model that exhibits a
semi-Poisson-to-Ginibre crossover transition. It is relevant to
recall that, although the Ginibre ensemble of 2�2 random
matrices with arbitrary complex elements belongs to the uni-
versality class of strongly non-Hermitian random matrices,
there is no universal ensemble of random matrices from
which semi-Poisson statistics can be derived �61�. In this
sense, the semi-Poisson-to-Ginibre transition does not even
have an analog in RMT, where crossover transitions occur
between universality classes. There is one other point which
should not be overlooked; the parameter that governs the
crossover transitions manifested by the various random ma-
trix models is usually quite vague �5�, whereas the parameter
that governs the semi-Poisson-to-Ginibre transition in this

paper and the Poisson-to-Wigner transition in Ref. �26� is
precisely the similarity dimension ds.

“Point repulsion” is a useful theoretical construct. Recall
that this concept was introduced early on in the paper and the
context was that we could think of the Euclidean space di-
mension d in Eq. �3� �the NNSD for Pd� as a “point-
repulsion” parameter, and that this interpretation of the space
dimension d actually reinforces certain notions of the more
general fractal dimension. In the present picture, the fractal
dimension can be interpreted as a measure of the amount of
“repulsion” between points of a fractal set; a larger value
indicates that points are more spread out and a smaller value
indicates that points are more clustered. So, for instance,
points on the Sierpinski gasket are more clustered than points
on the Sierpinski carpet �see Fig. 1�.

The kth-NNSD is one of the basic theoretical tools of
RMT �although it is not widely used except for k=1�. Meth-
ods based on kth-nearest-neighbor distances are among the
most rudimentary tools of geometrical statistics �62�, and are
often used in spatial statistics �63� to characterize spatial
point patterns that arise from theoretical models and physical
data �again k=1 is most popular�. The next logical step
would be to consider statistics such as the two-point correla-
tion function and geometrical analogs of the other long-range
statistics common in RMT, such as the variance, skewness,
and excess �kurtosis� of the number statistic �4�. As in the

FIG. 3. A crossover transition between semi-
Poisson and Ginibre statistics resulting from
point processes on the family of Koch fractals in
R2. The left panel shows random points on sev-
eral fractals that belong to the family �each one
specified by a particular choice of the rotation
angle ��. The exact similarity dimension ds of
each of the fractals �given to three decimal
places� is indicated on each window. The right
panel shows the corresponding second-NNSD of
the points on each fractal. The numerical data

�i.e., df = d̄f ±� and �� indicated on each window
are the figures-of-merit described in the main
text. The dotted, dashed, and solid curves are the

distributions PsP�S�, PG�S�, and P�S ;2 , d̄f�,
respectively.
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present paper, efforts along these lines would bring together
ideas from point processes, stochastic geometry, fractal ge-
ometry, geometrical statistics, and random matrix theory. Be-
sides other fundamental long-range correlation studies, one
important application would be to use the nearest-neighbor
spacing statistic as the basis for a new method of computing
the mass dimension. The idea would be to obtain numerical
estimates of the mass dimension from curve fits to nearest-
neighbor spacing histograms. Dimension estimation is a ba-
sic problem, especially for irregular fractals �i.e., fractals that
are not strictly self-similar�, and so the approach we are sug-
gesting would be worthwhile if it could be aptly applied to
irregular fractals. We are especially interested in applying
this type of approach to problems in the subject of random
fractals �49�, and in particular, percolation clusters, diffusion-
limited aggregation �DLA�, and other fractal growth pro-
cesses. We hope to explore these problems in a future
project.
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APPENDIX A: THE COMBINATORIAL FACTOR �

Equation �15a� without the prefactor  accounts for only
one particular configuration of points and therefore only
gives the probability of having this one configuration. We
must sum all of the probabilities obtained from each possible
configuration. All of these probabilities are identical, but the
question is how many configurations, in total, must be con-
sidered. The kth nearest neighbor can be any of the �N−1�
points �other than the “given point” itself�. For each possible
choice of the kth nearest neighbor, there are �N−2� remain-
ing points and �k−1� of these must be closer than the kth
nearest neighbor. So, we need to calculate the number of
ways of choosing �k−1� points �less than distance s� from a
total of �N−2� points. This combinatorial number is pre-
cisely the binomial coefficient �N−2�C�k−1�. Therefore, the total
number of configurations is

 = �N − 1� � �N−2�C�k−1�

=
�N − 1��N − 2�!

��N − 2� − �k − 1�� ! �k − 1�!

=
�N − 1�!

�N − k − 1� ! �k − 1�!
. �A1�

Of course, no such combinatorial factor is needed to account
for the fact that we could have specified any of the N points
to be the “given point”. The result would be the same be-
cause of symmetry, but we should not sum these probabilities
since each of these correspond to the kth-NNSD for each of
the points. In summary, specifying one configuration �which
we must do initially� yields only one of the probability dis-
tributions, and in the end, we must add all of these separate
�but equal� distributions.

APPENDIX B: ALTERNATIVE DERIVATION
OF EQ. (22) FROM EQ. (18)

It is edifying to give here an alternative derivation of the
kth-NNSD. We start from Eq. �18�. If N→� and P�s�→0
such that the product NP�s� remains fixed, then we can put
to good use the so-called Poisson approximation to the bino-
mial distribution �64�. The Poisson limit can be achieved if
we let N→� and R→� simultaneously and in such a way
so as to ensure the ratio N /Rds �� �which we can heuristi-
cally think of as a “fractal intensity”� remains fixed. If so, we
obtain directly the asymptotic probability density

P�s;k,ds,�� =
ds�

k

��k�
skds−1exp�− �sds� . �B1�

The mean spacing can then be evaluated immediately,

s̄ = �
0

�

sP�s;k,ds,��ds =
��k + 1/ds�
��k��1/ds

. �B2�

If we then transform to the random variable S=s / s̄, as usual,
this leads directly to Eq. �22�.

This alternative course to arrive at the formula for the
kth-NNSD is of no practical significance given our program
of rescaling the random variable s by s̄, but it does bring into
obvious view �albeit perhaps heuristically� the fundamental
role of the intensity. The statistical description of point pro-
cesses is usually accomplished through the use of intensity
functions. We bypassed the potential technicalities and diffi-
culties of properly defining and using intensity functions �in
a sense� by expressing the probability density in terms of the
random variable S, which is actually independent of �. How-
ever, if we were to do a more rigorous analysis of the general
model, then we would have to carefully consider the role of
a fractal intensity as a characteristic parameter of the model,
and its meaning in actual realizations of the model. It would
have been necessary to do this here already if we had opted
to do our analysis in terms of the random variable s. To
conclude this discussion, note the one formal difference be-
tween the two derivations. In the derivation given in Sec. II,
the parameter R is a finite positive constant, whereas in the
derivation given here, R is allowed to become arbitrarily
large.

APPENDIX C: A COMMENT ON THE FORMAL
RELATION BETWEEN THE WEIBULL AND BRODY

DISTRIBUTIONS

The Brody distribution and the unit-mean Weibull distri-
bution are essentially the same distribution and it is only
context that sets them apart. We begin with the Brody distri-
bution, which is usually written as

PB�X;q� = ��q + 1�Xqexp�− �Xq+1� , �C1a�

where

� = ��	q + 2

q + 1

�q+1

, �C1b�

and q is the Brody parameter. The two-parameter Weibull
distribution is usually written as �48�
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W�x;�,	� = �	x	−1exp�− �x	� , �C2�

where �
0 is the scale parameter, and 	
0 is the shape
parameter. The mean of the Weibull distribution is

x̄ = �
0

�

xW�x;�,	�dx = �−1/	�	1 +
1

	

 . �C3�

If we transform to the random variable X=x / x̄, then the unit-
mean Weibull distribution with shape parameter 	 is

W�X;	� = �	X	−1exp�− �X	� , �C4a�

where

� = ��		 + 1

	

�	

. �C4b�

So formally,

PB�X;q� = W�X;	 = q + 1� . �C5�

The fact that the Brody distribution is a special case of the
general two-parameter Weibull distribution was also recently
noted in Ref. �65�.

The Weibull and Brody distributions can be used equita-
bly to interpolate between the Poisson and Wigner limits,
and it is only a matter of what values the respective param-
eters assume at these limits. The Weibull distribution reduces
to the Poisson and Wigner distributions when the shape pa-
rameter 	=1 and 	=2, respectively, whereas the Brody dis-
tribution reduces to the Poisson and Wigner distributions
when the Brody parameter q=0 and q=1, respectively. The
family of distributions that result as 	 ranges from 1 to 2 is
the same family of distributions that result when the Brody
parameter q ranges from 0 to 1. Nevertheless, it is the Brody
distribution that is prevalent in RMT. This is not a historical
accident, but rather reflects the original interpretation of the
Brody parameter. The distribution PB�X ;q� �Eq. �C1�� intro-
duced by Brody has the property that PB�X ;q��Xq as X
→0, and thus the Brody parameter q can be immediately
identified as the degree of level repulsion. The distribution
P�S ;1 ,ds� �Eq. �23�� �which is really the unit-mean Weibull
distribution with shape parameter ds� rather has the property
that P�S ;1 ,ds��Sds−1 as S→0, and so the parameter ds can

be interpreted as the degree of point repulsion provided that
ds�1.

APPENDIX D: A BRIEF ON RIFSs AND THE RIA

Fractals can be conceptualized as the attractors of random
iterated function systems �RIFSs� �52�. A RIFS in Rd consists
of a set of M affine linear transformations
�w1 , . . . ,w� , . . . ,wM� �where each w� :Rd→Rd� and a set of
probabilities �p1 , . . . , p� , . . . , pM�, where ��=1

M p�=1. For a
given RIFS, there is a unique associated geometric object K
�a subset of Rd� called the attractor of the IFS and also a
unique associated measure that is related to the distribution
of points on K.

The random iteration algorithm �RIA� can be summarized
as follows: If x1 is an initial point in Rd, then for k
=1,2 ,3 , . . . ,N−1, the points xk+1=wnk

�xk�, where nk is cho-
sen randomly with probability p� from the set
�1, . . . , � , . . . ,M�. If x1 is a fixed point of one of the trans-
formations, then all points x1 ,x2 ,x3 , . . . ,xN lie on the attrac-
tor and these points can be thought of as a “random orbit” on
the attractor. Even if the initial point is not on the attractor,
numerical convergence onto the attractor is obtained after a
small number of iterations. We use the RIA with equal prob-
abilities to generate random orbits on the various fractals.

For a given RIFS, the random sequence nk together with
the initial point x1 is a complete description of the “point
process” on the fractal. The RIA effectively produces a ran-
dom sampling of the fractal. The affine transformations are
chosen randomly at each step, and thus there are no correla-
tions between any two consecutively chosen points. The ran-
dom points are uniformly distributed on the fractal if all
probabilities that define the RIFS are equal. The structure of
K is controlled exclusively by the affine maps of the IFS, and
it is the probabilities that govern the distribution of the points
on K. The derivation of P�S ;k ,ds� �Eq. �22�� assumes the
points to be uniformly distributed, and for regular fractals, a
uniform distribution of points can be obtained by using equal
probabilities. For fractals that are not strictly self-similar �for
example, self-affine fractals�, the specification of these prob-
abilities is an open problem.
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K2� fills out a larger portion of S �when the number of points is
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are more spread out �relative to each other� than the points of
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“repulsion” between them. Accordingly, the dimension of K1 is
smaller than the dimension of K2.
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for the term “point processes” �see Ref. �12� for rigorous defi-
nitions�. We use the phrase “point processes on fractals” heu-
ristically �for lack of better terms� to denote any stochastic
process whose outcome is a set of random points on a fractal.
In this paper, we avoid the use of the abstract theory of point
processes, random sets, and stochastic geometry.

�68� Any particular realization of this model depends on the fractal
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units of the mean spacing� only depends on the dimension of
the fractal, and hence the dimension is the only characteristic
parameter of importance for the spacing statistics. This is
analogous to using the notation Pd for the homogeneous Pois-
son point process in Rd.

�69� The distribution PsP�S ;n ,	� �Eq. �9�� was introduced in Ref.
�27� as the nth-NNSD for the short-range plasma model
�SRPM�, which has been referred to as the short-range Dyson
model in Ref. �29�. There is also unpublished work by A.
Pandey �31�, who investigated a model equivalent to the
SRPM and derived Eq. �9� in the framework of random
banded matrices. The distribution PsP�S ;n ,	� was also
shown to be relevant to a class of exactly solvable models
with nearest- and second-nearest-neighbor interactions
�32,33�. Finally, PsP�S ;n ,	� was found to coincide exactly
with the nth-NNSD for the so-called Poissonian “daisy
model” of rank 	 �34�. Note that in Refs. �31–34�, there is no
restriction on the value of the system parameter 	 in Eq. �9�,
but in Refs. �27,28� the parameter 	 takes only the values 1 ,2,
and 4.

�70� The exclusion of self-similar sets with similarity dimension
ds� �0,1� is intentional. There are log-periodic corrections to
Eq. �17� due to lacunarity effects. These corrections are not
trivial to include in the derivation of the kth-NNSD. Fortu-
nately, the corrections to Eq. �17� are quite small in amplitude
for most �but not all� fractals. Log-periodic corrections are
known to be very important for Cantor sets and other self-
similar sets with ds�1, and thus should be included for a
quantitative analysis of these sets. The purpose of the restric-
tion ds�1 here is thus to avoid the analytical complications
that would arise from including these corrections. We shall
elaborate on this matter elsewhere.

�71� The Euclidean TSP is a famous combinatorial optimization
problem. We should mention, at least parenthetically, a math-
ematical paper by Lalley �43�, who considered the TSP on a
self-similar set. Lalley obtained a limit law for the length of
the shortest trajectory through finite samples of points chosen
randomly and uniformly �in an appropriate sense� from self-
similar subsets of R2 whose Hausdorff dimension dH�2.
There is also a related paper that examines the convex hull of
points sampled from a self-similar fractal set �44�.
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